If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+11x-50.5=0
a = 1; b = 11; c = -50.5;
Δ = b2-4ac
Δ = 112-4·1·(-50.5)
Δ = 323
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{323}}{2*1}=\frac{-11-\sqrt{323}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{323}}{2*1}=\frac{-11+\sqrt{323}}{2} $
| 9v+9-8v=43 | | 3m^2+5m+2=0 | | 6(x-9)=3x+9 | | S=4.7+1.9x | | 5/3x-2=1/8=0 | | 8x+-3(x-6)-4=68 | | 2/x-5/3x=1/3 | | X3-5x=60 | | 2(3k+1)=5k-23 | | 1.5x/3=7/3 | | 3(x-3)=2(x-5)+6 | | 4x/5=7/9 | | 6x2-7x-13=0 | | 4(3x-1)=3(2x-5) | | 2(5-y)-3y=4 | | 35x^2-96x+2880=0 | | (2x+8x+3.2)/2=17.1 | | (43+4x)/2=32 | | m-2-4m=5-7m-11+3m | | 3x−2=3x-8 | | 4-1/2x=17 | | 3x^2+20x=672 | | 2y2-5y+10=0 | | 4.3(3r-7)=80.9 | | 6(k+9)=12 | | 4a=12-3a | | (2s-1)²=225 | | 4.3(x+2.5)=1.4x-7.4+0.4 | | 3y+7-13y=-11y-7 | | 27x-x^-180=0 | | 2x^2+3x+0,125=0 | | L^-1{-s/s^2+6s+25}=0 |